翻訳と辞書
Words near each other
・ Iwierzyce
・ Iwig
・ Iwiji
・ Iwikau Te Heuheu Tukino III
・ Iwikauikaua
・ Iwasaki Castle
・ Iwasaki Tsunemasa
・ Iwasaki Yanosuke
・ Iwasaki Yatarō
・ Iwasaki's snail-eater
・ Iwasaki, Aomori
・ Iwasawa
・ Iwasawa algebra
・ Iwasawa conjecture
・ Iwasawa decomposition
Iwasawa group
・ Iwasawa manifold
・ Iwasawa Station
・ Iwasawa theory
・ Iwase
・ Iwase (surname)
・ Iwase Dam
・ Iwase District, Fukushima
・ Iwase Province
・ Iwase Station
・ Iwase, Fukushima
・ Iwase, Ibaraki
・ Iwashi Uri Koi Hikiami
・ Iwashima Station
・ Iwashimizu Hachimangū


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Iwasawa group : ウィキペディア英語版
Iwasawa group

__NOTOC__
In mathematics a group is sometimes called an Iwasawa group or M-group or modular group if its lattice of subgroups is modular.
Alternatively, a group ''G'' is called an Iwasawa group when every subgroup of ''G'' is permutable in ''G'' .
proved that a ''p''-group ''G'' is an Iwasawa group if and only if one of the following cases happens:
* ''G'' is a Dedekind group, or
* ''G'' contains an abelian normal subgroup ''N'' such that the quotient group ''G/N'' is a cyclic group and if ''q'' denotes a generator of ''G/N'', then for all ''n'' ∈ ''N'', ''q''-1''nq'' = ''n''1+''p''''s'' where ''s'' ≥ 1 in general, but ''s'' ≥ 2 for ''p''=2.
In , Iwasawa's proof was deemed to have some essential gaps, which were filled by F. Napolitani and Z. Janko. has provided an alternative proof along different lines in his textbook. As part of Schmidt's proof, he proves that a finite ''p''-group is a modular group if and only if every subgroup is permutable, by .
Every subgroup of a finite ''p''-group is subnormal, and those finite groups in which subnormality and permutability coincide are called PT-groups. In other words, a finite ''p''-group is an Iwasawa group if and only if it is a PT-group.
==Examples==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Iwasawa group」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.